Abstract

The reaction between ground state carbon atoms and propylene, C3H6, was studied at average collision energies of 23.3 and 45.0 kJ mol−1 using the crossed molecular beam technique. Product angular distributions and time-of-flight spectra of C4H5 at m/e=53 were recorded. Forward-convolution fitting of the data yields a maximum energy release as well as angular distributions consistent with the formation of methylpropargyl radicals. Reaction dynamics inferred from the experimental results suggest that the reaction proceeds on the lowest A3 surface via an initial addition of the carbon atom to the π-orbital to form a triplet methylcyclopropylidene collision complex followed by ring opening to triplet 1,2-butadiene. Within 0.3–0.6 ps, 1,2-butadiene decomposes through carbon–hydrogen bond rupture to atomic hydrogen and methylpropargyl radicals. The explicit identification of C4H5 under single collision conditions represents a further example of a carbon–hydrogen exchange in reactions of ground state carbon with unsaturated hydrocarbons. This versatile machine represents an alternative pathway to build up unsaturated hydrocarbon chains in combustion processes, chemical vapor deposition, and in the interstellar medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.