Abstract
Social communication differences are seen in autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and obsessive–compulsive disorder (OCD), but the brain mechanisms contributing to these differences remain largely unknown. To address this gap, we used a data-driven and diagnosis-agnostic approach to discover brain correlates of social communication differences in ASD, ADHD, and OCD, and subgroups of individuals who share similar patterns of brain-behavior associations. A machine learning pipeline (regression clustering) was used to discover the pattern of association between structural brain measures (volume, surface area, and cortical thickness) and social communication abilities. Participants (n = 416) included children with a diagnosis of ASD (n = 192, age = 12.0[5.6], 19% female), ADHD (n = 109, age = 11.1[4.1], 18% female), or OCD (n = 50, age = 12.3[4.2], 42% female), and typically developing controls (n = 65, age = 11.6[7.1], 48% female). The analyses revealed (1) associations with social communication abilities in distributed cortical and subcortical networks implicated in social behaviors, language, attention, memory, and executive functions, and (2) three data-driven, diagnosis-agnostic subgroups based on the patterns of association in the above networks. Our results suggest that different brain networks may contribute to social communication differences in subgroups that are not diagnosis-specific.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.