Abstract

Seismic interferometry (SI) has been recently employed to retrieve the reflection response from natural earthquakes. We perform experimental study to apply SI to Ocean Bottom Seismogram (OBS) records in the Nankai Trough, southwest Japan in order to reveal the relatively shallow geological boundaries including surface of oceanic crust. Although the local earthquakes with short raypath we use to retrieve reflection response are expected to contain the higher-frequency components to detect fine-scale structures by SI, they cannot be assumed as plane waves and are inhomogeneously distributed. Since the condition of inhomogeneous source distribution violates the assumption of SI, the conventional processing yields to the deteriorated subsurface images. Here we adopt the raypath calculation for stationary phase evaluation of SI in order to overcome this problem. To find stationary phase, we estimate the raypaths of two reflections: (1) sea-surfaceP-wave reflection and (2) sea-surface multipleP-wave reflection. From the estimated raypath, we choose the crosscorrelation traces which are expected to produce objective reflections considering the stationary phase points. We use the numerical-modeling data and field data with 6 localized earthquakes and show that choosing the crosscorrelation traces by stationary phase evaluation improves the quality of the reflections of the oceanic crust surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.