Abstract

A novel NMR experiment allows one to characterize slow motion in macromolecules. The method exploits the fact that motions, such as rotation about dihedral angles, induce correlated fluctuations of the isotropic chemical shifts of the nuclei in the vicinity. The relaxation of two-spin coherences involving C(alpha) and Cbeta nuclei in proteins provides information about correlated fluctuations of the isotropic chemical shifts of C(alpha) and Cbeta. The difference between the relaxation rates of double- and zero-quantum coherences and is shown to be affected by cross-correlated chemical shift modulation. In ubiquitin, evidence for slow motion is found in loops or near the ends of beta-strands and alpha-helices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.