Abstract
Head pose estimation and facial landmark localization are crucial problems which have a large amount of applications. We propose a cross-cascading regression network which simultaneously perform head pose estimation and facial landmark detection by integrating information embedded in both head poses and facial landmarks. The network consists of two sub-models, one responsible for head pose estimation and the other for facial landmark localization, and a convolutional layer (channel unification layer) which enables the communication of feature maps generated by both sub-models. To be specific, we adopt integral operation for both pose and landmark coordinate regression, and exploit expectation instead of maximum value to estimate head pose and locate facial landmarks. Results of extensive experiments demonstrate that our approach achieves state-of-the-art performance on the challenging AFLW dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.