Abstract
In this paper, we obtain the crosscap number of any alternating knots by using our recently-introduced diagrammatic knot invariant (Theorem 1). The proof is given by properties of chord diagrams (Kindred proved Theorem 1 independently via other techniques). For non-alternating knots, we give Theorem 2 that generalizes Theorem 1. We also improve known formulas to obtain upper bounds of the crosscap number of knots (alternating or non-alternating) (Theorem 3). As a corollary, this paper connects crosscap numbers and our invariant with other knot invariants such as the Jones polynomial, twist number, crossing number, and hyperbolic volume (Corollaries 1–7). In Appendix A, using Theorem 1, we complete giving the crosscap numbers of the alternating knots with up to 11 crossings including those of the previously unknown values for [Formula: see text] knots (Tables A.1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.