Abstract

Single fibres isolated from frog muscle were tetanically stimulated at 14 degrees C to produce isometric tetani at a sarcomere length of about 2.16 microm, using a striation follower device to measure the sarcomere length of a selected segment of fibre. Force-velocity data were obtained by applying ramp releases at pre-set velocity at the tetanus plateau. Sarcomere stiffness was measured at isometric plateau and during isotonic shortening by using sinusoidal length changes at 2 kHz frequency and about 1 nm per half sarcomere (hs) peak to peak amplitude. A correction method was used to compensate for the force truncation due to the quick recovery. After data collection, the bathing solution was substituted with Ringer plus ethylene glycol (EG) at 2 M (11.2% v/v). When the fibre was fully equilibrated with the new solution, the measurements were repeated. Ethylene glycol reduced the speed of the tetanus rise and tetanus relaxation without altering the isometric tension, and reduced the maximum shortening velocity by about 20%. During isotonic contraction tension and stiffness at each given shortening velocity were reduced by about the same amount, so that the stiffness/tension ratio remained almost unaltered. Force-velocity and stiffness data in both standard and EG Ringer were analysed in terms of a two state model (Huxley, 1957). The analysis showed that our results can be accounted for by assuming that EG at 2 M concentration reduces all the rate constants for crossbridges interaction by about the same amount.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call