Abstract

AbstractAs an inhomogeneous mixture of pure ice, brine, air and solid salts the physical properties of sea ice depend on its highly temperature-dependent microstructure. Understanding the microstructure and the way it responds to variations in temperature and salinity is crucial in developing an improved understanding of the interaction between sea ice and the environment. However, measurements monitoring the internal structure of sea ice are difficult to obtain without disturbing its natural state. We have recently developed an application of cross-borehole d.c. resistivity tomography to make in situ measurements that resolve the anisotropic resistivity structure of first-year sea ice. We present results from measurements made in 2008 off Barrow, Alaska, and in 2009 off Ross Island, Antarctica. the sea ice in these two regions forms in different environments: at Barrow, relatively quiescent conditions typically lead to a predominance of columnar ice, while more turbulent conditions and underwater ice formation in McMurdo Sound tend to produce a larger component of frazil or platelet ice. Interpretation of the resistivity measurements carried out in association with temperature and salinity data collected simultaneously allows both observation of the temporal evolution of the ice structure and, in the case of the Antarctic measurements, the identification of different ice types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call