Abstract

Abstract The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measures reflectivity downward from space and provides observations of the vertical distributions of precipitation over land as well as the ocean. It overpasses the southern part of the Korean Peninsula where (i) a dense network of operational S-band scanning radars is available and (ii) various types of precipitation occur. By utilizing a 3D reflectivity composite from the ground S-band radar (GR) observations, this paper shows a comparison of reflectivity profiles observed with both PR and GR focusing on their vertical structure. For four cases of widespread rain, visual and statistical analyses show that PR attenuation-corrected reflectivity agrees closely with reflectivity observed from the GR composite below the melting layer. Above and within the melting layer, PR is affected critically by its sensitivity while GR beam broadening at far ranges causes systematic differences in the PR–GR comparisons. For four cases of convective rain, PR underestimates the mean reflectivities by 1–3 dB compared with those from GR at low levels where precipitation attenuation is significant toward the ground. In these cases, the low sensitivity of PR results in a small number of matched points for weak echoes. Also, the PR–GR discrepancy for the convective case is more affected by time mismatching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call