Abstract

This is the second paper of a series devoted to provide theoretical and practical results and new algorithms for the selection of the number of Principal Components (PCs) in Principal Component Analysis (PCA) using cross-validation. The study is especially focused on the element-wise k-fold (ekf), which is among the most used algorithms for that purpose. In this paper, a taxonomy of PCA applications is proposed and it is argued that cross-validatory algorithms computing the prediction error in observable variables, like ekf, are only suited for a class of applications. A number of cross-validation methods, several of which are original, are compared in two applications of this class: missing data imputation and compression. The results show that the ekf is especially suited for missing data applications while other traditional cross-validation methods, those by Wold and Eastment and Krzanowski, are not found to provide useful outcomes in any of the two applications. These results are of special value considering that the methods investigated are computed in the main commercial software packets for chemometrics. Finally, the choice of the missing data algorithm within ekf is also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.