Abstract
DNA microarray technology has made it possible to measure the expression levels of thousands of genes simultaneously in a particular cell or tissue. The challenge for computational biologists and bioinformaticists will be to develop methods that are able to identify subsets of gene expression variables and features that classify cells and tissues into meaningful biological and clinical groups. Genetic programming (GP) has emerged as a machine learning tool for variable and feature selection in microarray data analysis. However, a limitation of GP is a lack of cross validation strategies for the assessment of GP results. This is partly due to the inherent complexity of GP due to its stochastic properties. Here, we introduce and review cross validation consistency (CVC) as a new modeling strategy for use with GP. We review the application of CVC to symbolic discriminant analysis (SDA), a GP-based analytical strategy for mining gene expression patterns in DNA microarray data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.