Abstract
Local natural gas distribution companies (LDCs) require accurate demand forecasts across various time periods, geographic regions, and customer class hierarchies. Achieving coherent forecasts across these hierarchies is challenging but crucial for optimal decision making, resource allocation, and operational efficiency. This work introduces a method that structures the gas distribution system into cross-temporal hierarchies to produce accurate and coherent forecasts. We apply our method to a case study involving three operational regions, forecasting at different geographical levels and analyzing both hourly and daily frequencies. Trained on five years of data and tested on one year, our model achieves a 10% reduction in hourly mean absolute scaled error and a 3% reduction in daily mean absolute scaled error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.