Abstract

We compared the allosteric regulation and effector binding properties of wild type R1 protein and R1 protein with a mutation in the "activity site" (D57N) of mouse ribonucleotide reductase. Wild type R1 had two effector-binding sites per polypeptide chain: one site (activity site) for dATP and ATP, with dATP-inhibiting and ATP-stimulating catalytic activity; and a second site (specificity site) for dATP, ATP, dTTP, and dGTP, directing substrate specificity. Binding of dATP to the specificity site had a 20-fold higher affinity than to the activity site. In all these respects, mouse R1 resembles Escherichia coli R1. Results with D57N were complicated by the instability of the protein, but two major changes were apparent. First, enzyme activity was stimulated by both dATP and ATP, suggesting that D57N no longer distinguished between the two nucleotides. Second, the two binding sites for dATP both had the same low affinity for the nucleotide, similar to that of the activity site of wild type R1. Thus the mutation in the activity site had decreased the affinity for dATP at the specificity site, demonstrating the interaction between the two sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.