Abstract

Our previous studies have shown that morphine withdrawal induced an increase in the expression of protein kinase (PK) A and mitogen-activated extracellular kinase (MAPK) pathways in the heart during morphine withdrawal. The purpose of the present study was to evaluate the interaction between PKA and extracellular signal-regulated kinase (ERK) signaling pathways mediating the cardiac adaptive changes observed after naloxone administration to morphine-dependent rats. Dependence on morphine was induced by a 7-day subcutaneous implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (2 mg/kg). ERK1/2 and tyrosine hydroxylase (TH) phosphorylation was determined by quantitative blot immunolabeling using phosphorylation state-specific antibodies. Naloxone-induced morphine withdrawal activates ERK1/2 and phosphorylates TH at Ser31 in the right and left ventricle, with an increase in the mean arterial blood pressure and heart rate. When N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), a PKA inhibitor, was infused, concomitantly with morphine, it diminished the expression of ERK1/2. In contrast, the infusion of calphostin C (a PKC inhibitor) did not modify the morphine withdrawal-induced activation of ERK1/2. The ability of morphine withdrawal to activate ERK that phosphorylates TH at Ser31 was reduced by HA-1004. The present findings demonstrate that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation (phosphorylation) of TH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call