Abstract
Oxidative stress and hypoxia are two opposite microenvironments involved in HCC metastasis. Thioredoxin (TXN) and hypoxia-inducible factor 2α (HIF-2α) are typical proteins involved in these two different microenvironments, respectively. How these two factors interact to influence the fate on tumor cells remains unknown. Hypoxia facilitated HCC cells withstood oxidative stress and eventually promoted HCC cells metastasis, in which TXN and HIF-2α were mostly involved. Upregulation of TXN/HIF-2α correlated with poor HCC prognosis and promoted HCC metastasis both in vitro and in vivo. Epithelial-mesenchymal transition (EMT) process was involved in TXN/HIF-2α-enhanced invasiveness of HCC cells. Additionally, the stability and activity of HIF-2α were precisely regulated by TXN via SUMOylation and acetylation, which contributed to HCC metastasis. Our data revealed that the redox protein TXN and HIF-2α are both associated with HCC metastasis, and the fine regulation of TXN on HIF-2α contributes essentially during the process of metastasis. Our study provides new insight into the interaction mechanism between hypoxia and oxidative stress and implies potential therapeutic benefits by targeting both TXN and HIF-2α in the treatment of HCC metastasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.