Abstract

Objective: To identify the interaction between the MYOC Y437H mutation and TGF-β2 in a family with primary open-angle glaucoma (POAG).Methods: The MYOC Y437H mutation was identified in a family with POAG; the family was a fourth-generation family with 27 members, of which 6 members were affected. Analysis focused on the secreted myocilin protein and TGF-β2 found in the aqueous humor. Samples were taken both from normal controls and MYOC mutant carriers and cross-talk between MYOC Y437H and TGF-β2 were evaluated in the trabecular meshwork (TM) cells.Results: Aqueous humor secreted myocilin protein levels were reduced while TGF-β2 levels were increased in patients with the MYOC (c.1309T>C) mutation. This inverse relationship indicated that elevated TGF-β2 may be an important pathogenic mechanism in the progression of myocilin-related POAG. In TM cells expressing the MYOC Y437H mutant, exogenous TGF-β2 also significantly increased myocilin expression as well as the endoplasmic reticulum (ER) stress markers GRP94 and CHOP. This increase in TGF-β2 was also associated with increased cell death in cells carrying the MYOC Y437H mutation.Conclusion: These data collectively suggest that the mutual interaction between glaucomatous MYOC mutation and TGF-β2 contributed to the cell death of TM cells. This relationship also provides a new, therapeutic targets for the treatment of glaucoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call