Abstract
Skin is the largest organ in our body and strategically placed to provide a metabolically active biological barrier against a range of noxious stressors. A lot of inflammatory cytokines, which are increased after ultraviolet (UV) irradiation produced by keratinocytes or other immunocytes, are closely related to pigmentary changes, including interleukin-18 (IL-18) and interferon-γ (IFN-γ). In this study, the effect of cross-talk between IL-18 and IFN-γ on melanogenesis was investigated. Treatment with IL-18 resulted in a dose-dependent increase of melanogenesis, while IFN-γ made an opposite effect. This influence of IL-18 and IFN-γ was mediated by regulations of microphthalmia-associated transcription factor (MITF) and its downstream enzymatic cascade expressions. Furthermore, IFN-γ inhibited basal and IL-18-induced melanogenesis. IFN-γ increased signal transducer and activator of transcription-1 (STAT-1) phosphorylation to play its position in regulating melanin pigmentation, and its inhibitory effect could be prevented by Janus Kinase 1 (JAK 1) inhibitor. IFN-γ could inhibit melanogenesis by decreasing melanocyte dendrite formation. In addition, IFN-γ inhibited the expressions of Rab Pases to suppress the mature and transport of melanosomes. IL-18 could rapidly induce Akt and PTEN phosphorylation and p65 expression in B16F10 cells. When treatment with IL-18 and IFN-γ together, the phosphorylation level of Protein Kinase B (Akt) and phosphatase and tensin homolog deleted on chromosome ten (PTEN) and expression of p65 NF-κB were inhibited, compared with treated with IL-18 only. Our studies indicated that IFN-γ could directly induce B16F10 cells apoptosis in vitro. Furthermore, we demonstrated that IFN-γ markedly up-regulated IL-18 binding protein (BP) production in normal human foreskin-derived epidermal keratinocytes in dose-dependent manner. UVB irradiation induced protease-activated receptor-2 (PAR-2) expression in NHEK, IFN-γ could inhibit this enhancement in a dose-dependent manner. These data suggest that IFN-γ plays a role in regulating inflammation- or UV-induced pigmentary changes, in direct/indirect manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.