Abstract

Nitric oxide (NO) and hydrogen peroxide (H2O2) are gradually becoming established as critical regulators in plants under physiological and stressful conditions. Strong spatiotemporal correlations in their production and distribution have been identified in various plant biological processes. In this context, NO and H2O2 act synergistically or antagonistically as signals or stress promoters depending on their respective concentrations, engaging in processes such as the hypersensitive response, stomatal movement, and abiotic stress responses. Moreover, proteins identified as potential targets of NO-based modifications include a number of enzymes related to H2O2 metabolism, reinforcing their cross-talk. In this review, several processes of well-characterized functional interplay between H2O2 and NO are discussed with respect to the most recent reported evidence on hypersensitive response-induced programmed cell death, stomatal movement, and plant responses to adverse conditions and, where known, the molecular mechanisms and factors underpinning their cross-talk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call