Abstract

A diffraction-based beam-propagation model is used to study optical cross talk in microbeam free-space optical interconnection (FSOI) systems. The system consists of VCSEL's, microlenses, and metal-semiconductor-metal (MSM) detectors, with the detectors modeled as amplitude gratings with low contrast ratio (based on experimental results). Different possible cross-talk sources are studied. Results show that, in an optimized system, the cross talk caused by diffractive scattering is not an issue. However, in such systems the principal reflection from a MSM detector surface creates two problems: VCSEL coupling and ghost talk. The coupling of the reflected beam into the VCSEL's may cause power oscillation (and increase the bit error rate), whereas ghost talk will limit the distance-bandwidth product of the interconnect system. This optical system is also abstracted in hspice together with the laser driver and receiver circuits to analyze ghost talk in this system. Results show that at high speed (1 Gbit/s or more) these effects negatively affect system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.