Abstract

Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.