Abstract

This study aims to determine the spatial–temporal scales where the SST forcing of the near-surface winds takes places, and its relationship with the action of coherent ocean eddies. Here, cross-spectral statistics are used to examine the relationship between satellite-based SST and 10-m wind speed (w) fields at scales between 10 $$^2$$ –10 $$^4$$ km and 10 $$^1$$ –10 $$^3$$ days. It is shown that the transition from negative SST/w correlations at large-scales to positive at oceanic mesoscales occurs at wavelengths coinciding with the atmospheric first baroclinic Rossby radius of deformation; and that the dispersion of positively-correlated signals resembles tropical instability waves near the equator, and Rossby waves in the extratropics. Transfer functions are used to estimate the SST-driven w response in physical space ( $$w_c$$ ), a signal that explains 5–40% of the mesoscale w variance in the equatorial cold tongues, and 2–15% at extratropical SST fronts. The signature of ocean eddies is clearly visible in $$w_c$$ , accounting for 20–60% of its variability in eddy-rich regions. To provide further insight on the role of ocean eddies in the SST-driven coupling, the analysis is repeated for two climate model (CCSM) simulations using ocean grid resolutions of $$1^\circ$$ (eddy-parameterized, LR) and $$0.1^\circ$$ (eddy-resolving, HR). The lack of resolved eddies in LR leads to a significantly underestimated mesoscale w variance relative to HR. Conversely, the $$w_c$$ variability in HR can exceed the satellite estimates by a factor of two at extratropical SST fronts and underestimate it by a factor of almost six near the equator, reflecting shortcomings of the CCSM to be addressed in its future developments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.