Abstract

It is well known that the primary targets responsible for first-order sea echoes observed by a High-Frequency (HF) radar are the advancing and receding ocean waves with the wavelengths at Bragg scales. However, in light of the fact that the ionospheric sporadic E (Es) and F layers may be present in the viewing range of the HF radar for ocean wave detection, the radar returns reflected from the F and Es layers may significantly contaminate the ocean wave power spectrum. The characteristics of the first-order sea echoes and ionospheric interferences measured by the CODAR-SeaSonde in Taiwan area are analyzed and presented in this article. The coherences and phases of the normalized cross spectra of the sea and ionospheric echoes between different pairs of the receiving channels are calculated, respectively. One of the striking features presented in this report is that the ionospheric echo heights scaled from the ionogram observed by the Chung-Li ionosonde are about 30 km lower than those observed by the DATAN CODAR-SeaSonde. It is also found that the coherences of the sea echoes are generally smaller than those of the ionospheric echoes by about 15% on average, and the phase fluctuations (standard deviations) of the sea echoes are substantially larger than those of the ionospheric layer reflection echoes. In addition, statistics show that the sum of the mean phases of the ionospheric echoes between the three receiving channel pairs is approximately zero, while it is not for the sea echoes. These results seem to suggest that the use of the discrepancies in the characteristics of the coherences and phases between the sea and ionospheric echoes may provide a potential means to be helpful to distinguish the sea and ionospheric echoes in the CODAR-SeaSonde observed cross power spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.