Abstract
Interpreting function and fitness effects in diverse plant genomes requires transferable models. Language models (LMs) pre-trained on large-scale biological sequences can learn evolutionary conservation and offer cross-species prediction better than supervised models through fine-tuning limited labeled data. We introduce PlantCaduceus, a plant DNA LM based on the Caduceus and Mamba architectures, pre-trained on a curated dataset of 16 Angiosperm genomes. Fine-tuning PlantCaduceus on limited labeled Arabidopsis data for four tasks, including predicting translation initiation/termination sites and splice donor and acceptor sites, demonstrated high transferability to 160 million year diverged maize, outperforming the best existing DNA LM by 1.45 to 7.23-fold. PlantCaduceus is competitive to state-of-the-art protein LMs in terms of deleterious mutation identification, and is threefold better than PhyloP. Additionally, PlantCaduceus successfully identifies well-known causal variants in both Arabidopsis and maize. Overall, PlantCaduceus is a versatile DNA LM that can accelerate plant genomics and crop breeding applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.