Abstract

The known genome sequence of Borrelia burgdorferi, an agent of Lyme borreliosis, was used to study the genetic content and gene expression in B. hermsii, another spirochete pathogen and a cause of relapsing fever. Cross-species hybridization of a DNA array representing 1628 open reading frames (ORF) of B. burgdorferi with genomic DNA of B. hermsii indicated that the latter organism has at least 81% of the chromosomal genes and 43% of the plasmid genes of B. burgdorferi. We then carried out quantitative hybridization of the arrays with multiple replicates of cDNA produced from B. hermsii cells growing in the blood of infected mice or in culture medium that was adjusted to the same pH, temperature and a spirochete density as infected blood. Of 642 B. burgdorferi ORFs hybridized by all replicates under both conditions, 12 (1.9%) demonstrated differential expression by a regularized t-test and stringent criteria. BBP07 and BBG30, two plasmid-borne ORFs with the greatest measurable difference in expression between in vivo and in vitro conditions, putatively encode proteins of unknown function. Orthologues of BBP07 in B. hermsii were identified, and increased expression in infected mice was demonstrated by quantitative reverse-transcriptase polymerase chain reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.