Abstract

Many structural and functional aspects of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis are known to be highly conserved, but the significance of this from a toxicological perspective has received comparatively little attention. High-quality data generated through development and validation of Tier 1 tests for the U.S. Environmenal Protection Agency Endocrine Disruptor Screening Program (EDSP) offer a unique opportunity to compare responses of mammals versus fish to chemicals that may affect shared pathways within the HPG axis. The present study focuses on data generated with model chemicals that act (primarily) as estrogen receptor agonists (17α-ethynylestradiol, methoxychlor, bisphenol A), androgen receptor agonists (methyltestosterone, 17β-trenbolone), androgen receptor antagonists (flutamide, vincolozolin, p,p'-DDE), or inhibitors of different steroidogenic enzymes (ketoconazole, fadrozole, fenarimol, prochloraz). All 12 chemicals had been tested in the EDSP fish short-term (21 d) reproduction assay and in one or more of the four in vivo Tier 1 screens with rats (uterotrophic, Hershberger, male and female pubertal assays). There was a high concordance between the fish and rat assays with respect to identifying chemicals that impacted specific endocrine pathways of concern. Although most chemicals were detected as positive in both rat and fish assays, eliminating data from one class of vertebrate or the other would weaken the battery. For example, the effects of competitive inhibitors of steroid hormone synthesis were far more obvious in the fish assay, whereas the activity of androgen receptor antagonists was clearer in mammalian assays. The observations are significant both to the cross-species extrapolation of toxicity of HPG-active substances and the optimization of screening and testing frameworks for endocrine-disrupting chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call