Abstract

Ecological risk assessment frequently relies on cross-species extrapolation to predict acute toxicity from chemical exposures. A major concern for environmental risk characterization is the degree of uncertainty in assessing xenobiotic biotransformation processes. Although inherently complex, metabolite identification is critical to risk assessment since the product(s) formed may pose a greater toxicological threat than the parent molecule. This issue is further complicated by differences observed in metabolic transformation pathways among species. Conazoles represent an important class of azole fungicides that are widely used in both pharmaceutical and agricultural applications. The antifungal property of conazoles occurs via complexation with the cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell wall synthesis. This mode of action has cause for concern regarding the potential adverse impact of conazoles on the broad spectrum of CYP-based processes within mammalian and aquatic species. In this study, in vitro metabolic profiles were determined for thirteen conazole fungicides using rat and rainbow trout (Oncorhynchus mykiss) liver microsomes and purified human CYP 3A4. Results showed that 10 out of the 13 conazoles tested demonstrated identical metabolite profiles among rat and trout microsomes, and these transformations were well conserved via both aromatic and aliphatic hydroxylation and carbonyl reduction processes. Furthermore, nearly all metabolites detected in the rat and trout microsomal assays were detected within the human CYP 3A4 assays. These results indicate a high degree of metabolic conservation among species with an equivalent isozyme activity of human CYP 3A4 being present in both the rat and trout, and provides insight into xenobiotic biotransformations needed for accurate risk assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call