Abstract
Referrals for gender dysphoria (GD), characterized by a distressful incongruence between gender identity and at-birth assigned sex, are steadily increasing. The underlying neurobiology, and the mechanisms of the often-beneficial cross-sex hormone treatment are unknown. Here, we test hypothesis that own body perception networks (incorporated in the default mode network—DMN, and partly in the salience network—SN), are different in trans-compared with cis-gender persons. We also investigate whether these networks change with cross-sex hormone treatment. Forty transmen (TrM) and 25 transwomen (TrW) were scanned before and after cross-sex hormone institution. We used our own developed Body Morph test (BM), to assess the perception of own body as self. Fifteen cisgender persons were controls. Within and between-group differences in functional connectivity were calculated using independent components analysis within the DMN, SN, and motor network (a control network). Pretreatment, TrM and TrW scored lower “self” on the BM test than controls. Their functional connections were weaker in the anterior cingulate-, mesial prefrontal-cortex (mPFC), precuneus, the left angular gyrus, and superior parietal cortex of the DMN, and ACC in the SN “Self” identification and connectivity in the mPFC in both TrM and TrW increased from scan 1 to 2, and at scan 2 no group differences remained. The neurobiological underpinnings of GD seem subserved by cerebral structures composing major parts of the DMN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.