Abstract
Electron-loss cross sections of Oq+ (q = 1 — 4) colliding with He, Ne and Ar atoms are measured in the intermediate velocity regime. The ratios of the cross sections of two-electron loss to that of one-electron loss R21 are presented. It is shown that single-channel analysis is not sufficient to explain the results, but that projectile electron loss, electron capture by the projectile and target ionization must be considered together to interpret the experimental data. The screening and antiscreening effects can account for the threshold velocity results, but cannot explain the dependence of the ratio R21 on velocity quantitatively. In general, the effective charge of the target atom increases with velocity increasing because the high-speed projectile ion can penetrate into the inner electronic shell of target atom. Ne and Ar atoms have similar effective charges in this velocity regime, but He atoms have smaller ones at the same velocities due to its smaller nuclear charge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.