Abstract
Titanium interaction with phosphorus-doped polycrystalline silicon gate electrodes was investigated by cross-sectional transmission electron microscopy and correlated with sheet resistance measurements. Phosphorus concentration above 1×1016 ion/cm2 in the polycrystalline silicon leads to decreased TiSi2 formation, discontinuous metal silicide layer, and increased sheet resistance. A possible cause could be the formation of titanium phosphide at high phosphorus concentration in the polycrystalline silicon, competing with the total titanium available for silicide formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.