Abstract
Evaluating value at risk (VaR) for a firm’s returns during periods of financial turmoil is a challenging task because of the high volatility in the market. We propose estimating conditional VaR and expected shortfall (ES) for a given firm’s returns using quantile regression with cross-sectional (CSQR) data about other firms operating in the same market. An evaluation using US market data between 2000 and 2020 shows that our approach has certain advantages over a CAViaR model. Identification of low-risk firms and a reduction in computing times are additional advantages of the new method described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The North American Journal of Economics and Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.