Abstract
With continuous scaling on CMOS device dimensions, it is becoming increasingly challenging for conventional failure analysis (FA) methods to identify the failure mechanism at the circuit level in an integrated chip. Scanning Electron Microscopy (SEM) based nanoprobing is becoming an increasingly critical tool for identifying non-visual failures via electrical characterization in current electrical FA metrology for fault isolation since 2006 Toh et al. (2007), Shen et al. (2007), Ng et al. (2012) . Currently, most of the nanoprobing fault isolation is nanoprobe in top-down planar direction, such as nanoprobe on via, contact and metal line. This paper focused on fault isolation of sub-micron devices by nanoprobing on a cross-sectional plane. This is a new application area; it is very useful for sample that cannot perform fault isolation with conventional top-down planar nanoprobing, especially on non-volatile memory that with single transistor memory array that arrange in a vertical direction, such as Magnetic Random Access Memory (MRAM), Phase-Change Random Access Memory (PC-RAM), flash memory and etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.