Abstract

The Additive Manufacturing Benchmark Series (AM Bench) is a NIST-led organization that provides a continuing series of additive manufacturing benchmark measurements, challenge problems, and conferences with the primary goal of enabling modelers to test their simulations against rigorous, highly controlled additive manufacturing benchmark measurement data. To this end, single-track (1D) and pad (2D) scans on bare plate nickel alloy 718 were completed with thermography, cross-sectional grain orientation and local chemical composition maps, and cross-sectional melt pool size measurements. The laser power, scan speed, and laser spot size were varied for single tracks, and the scan direction was varied for pads. This article focuses on the cross-sectional melt pool size measurements and presents the predictions from challenge problems. Single-track depth correlated with volumetric energy density while width did not (within the studied parameters). The melt pool size for pad scans was greater than single tracks due to heat buildup. Pad scan melt pool depth was reduced when the laser scan direction and gas flow direction were parallel. The melt pool size in pad scans showed little to no trend against position within the pads. Uncertainty budgets for cross-sectional melt pool size from optical micrographs are provided for the purpose of model validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.