Abstract
Understanding plasma distribution, characteristics and phenomena is important for the development and optimization of semiconductor device manufacturing plasma equipment, such as etching and deposition tools. For this reason, plasma simulation is currently being utilized at every stage of equipment design, development and improvement. The cross section sets obtained by applying Denpoh-Nanbu theory to Ar+ on CF4 collisions were found to be in general qualitative and in part quantitative agreement with data from the literature. The Monte Carlo technique was applied to perform calculations of transport parameters. Calculated cross sections can be used to obtain transport coefficients, specially drift velocity, characteristic energy, reduced mobility, longitudinal diffusion and rate coefficients for low and moderate reduced electric fields E/N (E-electric field strength; N-gas density) and accounting for the non-conservative collisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.