Abstract

Many major geological terranes are interpreted as accretionary complexes, and there are several speculative models for their structure and mode of formation. The seismic reflection section across the Barbados Ridge complex at lat 16°12′N presented here shows, for the first time, the entire cross-sectional shape of a large accretionary wedge and its forearc basin. Atlantic oceanic crust underlies 122 km of the wedge and then passes beneath the crust of the forearc of the Caribbean plate, where it can be traced 15 km farther; it dips landward at 9°. The forearc basement dips seaward to meet the ocean crust. The maximum thickness of the wedge is about 10 km. A layer of sediments, 1 km thick, is drawn beneath the accretionary wedge on the surface of the oceanic crust, with little disturbance, for a distance of 70 km, and some sediments still appear to adhere to the ocean crust to where it passes beneath the forearc basement. It is not clear whether sediment is subducted deeper, but it appears probable. The principal resistance to landward motion of the accretionary wedge is provided by the weight of up to 6 km of forearc-basin sediments on the seaward-dipping forearc basement. Both the forearc sediments and the basement have been deformed as a consequence of the horizontal compression produced by the subduction of ocean crust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.