Abstract

Models of the r-process are sensitive to the production rate of 9Be because, in explosive environments rich in neutrons, alpha(alpha n,gamma)9Be is the primary mechanism for bridging the stability gaps at A=5 and A=8. The alpha(alpha n,gamma)9Be reaction represents a two-step process, consisting of alpha+alpha -> 8Be followed by 8Be(n,gamma)9Be. We report here on a new absolute cross section measurement for the 9Be(gamma,n)8Be reaction conducted using a highly-efficient, 3He-based neutron detector and nearly-monoenergetic photon beams, covering energies from E_gamma = 1.5 MeV to 5.2 MeV, produced by the High Intensity gamma-ray Source of Triangle Universities Nuclear Laboratory. In the astrophysically important threshold energy region, the present cross sections are 40% larger than those found in most previous measurements and are accurate to +/- 10% (95% confidence). The revised thermonuclear alpha(alpha n,gamma)9Be reaction rate could have implications for the r-process in explosive environments such as Type II supernovae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call