Abstract

Nuclear data on structural materials are an important tool in the safe and efficient design of nuclear fusion reactors. Manganese is an important material because of low activation property for fusion reactors. Thus, the manganese metal is commonly used as a key component of many important alloys. And also, it is considered as the shielding materials for nuclear fusion reactor. In the present paper, the excitation functions of neutron and proton induced reactions on fusion structural material Manganese have been calculated by using Hybrid, Geometry Dependent Hybrid and Weisskopf Ewing models. In addition, the different nuclear level density models were tested such as Fermi Gas model with an energy independent level density parameter, and Fermi Gas model of Ignatyuk, Smirenkin, Tishin with an energy dependent level density parameter, and Superfluid nuclear model, and Kataria–Ramamurthy Fermi Gas model. The obtained theoretical cross section calculations in the framework of these nuclear models have been compared with the each other and, the experimental data and TENDL-2014 library. Finally, it seemed that the nuclear cross section calculations are quite sensitive to level densities for nucleon induced reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.