Abstract
Domain adaption (DA) is a challenging task that integrates knowledge from source domain (SD) to perform data analysis for target domain. Most of the existing DA approaches only focus on single-source-single-target setting. In contrast, multisource (MS) data collaborative utilization has been extensively used in various applications, while how to integrate DA with MS collaboration still faces great challenges. In this article, we propose a multilevel DA network (MDA-NET) for promoting information collaboration and cross-scene (CS) classification based on hyperspectral image (HSI) and light detection and ranging (LiDAR) data. In this framework, modality-related adapters are built, and then a mutual-aid classifier is used to aggregate all the discriminative information captured from different modalities for boosting CS classification performance. Experimental results on two cross-domain datasets show that the proposed method consistently provides better performance than other state-of-the-art DA approaches.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.