Abstract

In this paper11Dong Liang, Bin Kang and Xinyu Liu contributed equally to this work., we investigate cross-scene video foreground segmentation via supervised and unsupervised model communication. Traditional unsupervised background subtraction methods often face the challenging problem of updating the statistical background model online. In contrast, supervised foreground segmentation methods, such as those that are based on deep learning, rely on large amounts of training data, thereby limiting their cross-scene performance. Our method leverages segmented masks from a cross-scene trained deep model (spatio-temporal attention model (STAM), pyramid scene parsing network (PSPNet), or DeepLabV3+) to seed online updates for the statistical background model (CPB), thereby refining the foreground segmentation. More flexible than methods that require scene-specific training and more data-efficient than unsupervised models, our method outperforms state-of-the-art approaches on CDNet2014, WallFlower, and LIMU according to our experimental results. The proposed framework can be integrated into a video surveillance system in a plug-and-play form to realize cross-scene foreground segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.