Abstract
The double-bag theory in modern anatomy suggests that structures with coatings are commonly found in human body at various length scales, such as osteocyte processes covered by pericellular matrix and bones covered by muscle tissue. To understand the mechanical behaviors and physiological responses of such biological structures, we develop an analytical model to quantify surface effects on the deformation of a coated cylindrical compressible liquid inclusion in an elastic matrix subjected to remote loading. Our analytical solution reveals that coating can either amplify or attenuate the volumetric strain of the inclusion, depending on the relative elastic moduli of inclusion, coating, and matrix. For illustration, we utilize this solution to explore amplification/attenuation of volumetric strain in musculoskeletal systems, nerve cells, and vascular tissues. We demonstrate that coating often plays a crucial role in mechanical regulation of the development and repair of human tissues and cells. Our model provides qualitative analysis of cross-scale mechanical response of coated liquid inclusions, helpful for constructing mechanical microenvironment of cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.