Abstract

We report that stimulation of Mycobacterium tuberculosis secretory antigen- and tumor necrosis factor alpha-matured BALB/c mouse bone marrow dendritic cells (BMDCs) with anti-CD80 monoclonal antibody up-regulated CD86 levels on the cell surface. Coculture of these BMDCs with naïve, allogeneic T cells now down-regulated T helper cell type 1 (Th1) responses and up-regulated suppressor responses. Similar results were obtained with splenic CD11c(+)/CD8a(-) DCs but not to the same extent with CD11c(+)/CD8a(+) DCs. Following coculture with T cells, only BMDCs and CD11c(+)/CD8a(-) DCs and not CD11c(+)/CD8a(+) DCs displayed increased levels of surface CD86, and further, coculturing these DCs with a fresh set of T cells attenuated Th1 responses and increased suppressor responses. Not only naïve but even antigen-specific recall responses of the Th1-committed cells were modulated by DCs expressing up-regulated surface CD86. Further analyses showed that stimulation with anti-CD80 increased interleukin (IL)-10 and transforming growth factor-beta-1 levels with a concomitant reduction in IL-12p40 and interferon-gamma levels from BMDCs and CD11c(+)/CD8a(-) DCs and to a lesser extent, from CD11c(+)/CD8a(+) DCs. These results suggest that cross-talk between costimulatory molecules differentially regulates their relative surface densities leading to modulation of Th responses initiated from some DC subsets, and Th1-committed DCs such as CD11c(+)/CD8a(+) DCs may not allow for such modulation. Cognate antigen-presenting cell (APC):T cell interactions then impart a level of polarization on APCs mediated via cross-regulation of costimulatory molecules, which govern the nature of subsequent Th responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call