Abstract

The development of chemical sensors continues to be an active area of research, especially the development of a practical electronic nose. Here, we present a spectroscopic chemical sensor based on an array of 64 self-encoded polymer films deposited on a microfabricated silicon substrate. The polymer arrays were analyzed by FTIR and Raman spectroscopy before and after exposure to a series of organic volatiles to monitor changes in their vibrational fingerprints. We show here that the spectroscopic changes of self-encoded polymer films can be used to distinguish between volatile organic analytes. Changes induced in the sensor arrays by the analyte vapor were denoted by a spectroscopic response of the self-encoded polymer sensors and transformed into a response pattern by multivariate data analysis using partial least squares regression. The results indicated that the polymer sensors provide a unique and reproducible pattern for each analyte vapor and can potentially be used in the fabrication of a novel electronic nose device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.