Abstract

Although the importance of CD4+ T cell responses to human cytomegalovirus (HCMV) has recently been recognized in transplant and immunosuppressed patients, the precise specificity and nature of this response has remained largely unresolved. In the present study we have isolated CD4+ CTL which recognize epitopes from HCMV glycoproteins gB and gH in association with two different HLA-DR antigens, DRA1*0101/DRB1*0701 (DR7) and DRA1*0101/DRB1*1101 (DR11). Comparison of amino acid sequences of HCMV isolates revealed that the gB and gH epitope sequences recognized by human CD4+ T cells were not only conserved in clinical isolates from HCMV but also in CMV isolates from higher primates (chimpanzee, rhesus and baboon). Interestingly, these epitope sequences from chimpanzee, rhesus and baboon CMV are efficiently recognized by human CD4+ CTL. More importantly, we show that gB-specific T cells from humans can also efficiently lyse peptide-sensitized Patr-DR7+ cells from chimpanzees. These findings suggest that conserved gB and gH epitopes should be considered while designing a prophylactic vaccine against HCMV. In addition, they also provide a functional basis for the conservation of MHC class II lineages between humans and Old World primates and open the possibility for the use of such primate models in vaccine development against HCMV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call