Abstract

Abstract Recently, enterovirus 71 (EV71) has caused life-threatening outbreaks involving neurological and cardiopulmonary complications in Asian children with unknown mechanism. EV71 has one single serotype but can be phylogenetically classified into 3 main genogroups (A, B and C) and 11 genotypes (A, B1~B5 and C1~C5). In Taiwan, nationwide EV71 epidemics with different predominant genotypes occurred in 1998 (C2), 2000-2001 (B4), 2004-2005 (C4), and 2008 (B5). In this study, sera were collected to measure cross-reactive neutralizing antibody titers against different genotypes. We collected historical sera from children who developed an EV71 infection in 1998, 2000, 2005, 2008, or 2010 and measured cross-reactive neutralizing antibody titers against all 11 EV71 genotypes. In addition, we aligned and compared the amino acid sequences of P1 proteins of the tested viruses. Serology data showed that children infected with genogroups B and C consistently have lower neutralizing antibody titers against genogroup A (>4-fold difference). The sequence comparisons revealed that five amino acid signatures (N143D in VP2; K18R, H116Y, D167E, and S275A in VP1) are specific for genogroup A and may be related to the observed antigenic variations. In conclusion, this study documented antigenic variations among different EV71 genogroups and identified potential immunodominant amino acid positions. Enterovirus surveillance and vaccine development should monitor these positions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.