Abstract
Allergy diagnosis relying on the determination of specific IgE is frequently complicated by the presence of cross-reacting IgE of unclear clinical relevance. Particularly, the anaphylactogenic activity of IgE directed to cross-reactive carbohydrate moieties of glycoproteins from plants and invertebrates has been a matter of debate. In this study, we present the biochemical and immunological characterization of Api g 5, a glycoprotein allergen from celery with homology to FAD containing oxidases. Carbohydrate analysis of the allergen revealed the presence of glycans carrying fucosyl and xylosyl residues, structures previously shown to bind IgE. Chemical deglycosylation of the protein completely abolished binding of serum IgE from all 14 patients tested. Likewise, basophils from a patient allergic to mugwort pollen and celery were stimulated only by native Api g 5, whereas the deglycosylated allergen did not trigger release of histamine. IgE inhibition immunoblots showed that native Api g 5 other than the deglycosylated protein completely inhibited IgE binding to high molecular weight allergens in protein extracts from birch pollen, mugwort pollen, and celery. A similar inhibition was accomplished using the IgE binding oligosaccharide, MUXF, coupled to bovine serum albumin. All these observations taken together confer convincing evidence that IgE directed to cross-reactive carbohydrates is capable of eliciting allergic reactions in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.