Abstract
Summary Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]). It is also equivalent to the notion of “Mesure algèbrique”1, to the opposite of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9]. In the second part, we introduce the classic notion of “cross-ratio” of 4 points aligned in a real vector space. Finally, we show that if the real vector space is the real line, the notion corresponds to the classical notion3 [9]: The cross-ratio of a quadruple of distinct points on the real line with coordinates x 1, x 2, x 3, x 4 is given by: ( x 1 , x 2 ; x 3 , x 4 ) = x 3 - x 1 x 3 - x 2 . x 4 - x 2 x 4 - x 1 $$({x_1},{x_2};{x_3},{x_4}) = {{{x_3} - {x_1}} \over {{x_3} - {x_2}}}.{{{x_4} - {x_2}} \over {{x_4} - {x_1}}}$$ In the Mizar Mathematical Library, the vector spaces were first defined by Kusak, Leonczuk and Muzalewski in the article [6], while the actual real vector space was defined by Trybulec [10] and the complex vector space was defined by Endou [4]. Nakasho and Shidama have developed a solution to explore the notions introduced by different authors4 [7]. The definitions can be directly linked in the HTMLized version of the Mizar library5. The study of the cross-ratio will continue within the framework of the Klein- Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.