Abstract
The update performance in erasure-coded data centers is often bottlenecked by the constrained cross-rack bandwidth. We propose CAU, a cross-rack-aware update mechanism that aims to mitigate the cross-rack update traffic in erasure-coded data centers. CAU builds on three design elements: (i) selective parity updates, which select the appropriate parity update approach based on the update pattern and the data layout to reduce the cross-rack update traffic; (ii) data grouping, which relocates and groups updated data chunks in the same rack to further reduce the cross-rack update traffic; and (iii) interim replication, which stores a specified number of temporary replicas for each newly updated data chunk. We evaluate CAU via trace-driven analysis, local cluster experiments, and Amazon EC2 experiments. We show that CAU enhances state-of-the-arts by mitigating the cross-rack update traffic as well as maintaining high update performance in both local cluster and geo-distributed environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.