Abstract
This paper presents a deep learning approach for age estimation of human beings using their facial images. The different racial groups based on skin colour have been incorporated in the annotations of the images in the dataset, while ensuring an adequate distribution of subjects across the racial groups so as to achieve an accurate Automatic Facial Age Estimation (AFAE). The principle of transfer learning is applied to the ResNet50 Convolutional Neural Network (CNN) initially pretrained for the task of object classification and finetuning it’s hyperparameters to propose an AFAE system that can be used to automate ages of humans across multiple racial groups. The mean absolute error of 4.25 years is obtained at the end of the research which proved the effectiveness and superiority of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Emerging Trends in Engineering Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.