Abstract
BackgroundCervical cancer is a preventable disease, despite being one of the most common types of female cancers worldwide. Integrating existing programs for cervical cancer screening with personalized risk prediction algorithms can improve population-level cancer prevention by enabling more targeted screening and contrive preventive healthcare innovations. While algorithms developed for cervical cancer risk prediction have shown promising performance in internal validation on more homogeneous populations, their ability to generalize to external populations remains to be assessed. MethodsTo address this gap, we perform a cross-population comparative study of personalized prediction algorithms for more personalized cervical cancer screening. Using data from the Norwegian and Estonian populations, the algorithms are validated on internal and external datasets to study their potential biases and limitations when applied to different populations. We evaluate the algorithms in predicting progression from low-grade precancerous cervical lesions, simulating a clinically relevant application of more personalized risk stratification. ResultsAs expected, our numerical experiments show that algorithm performance varies depending on the population. However, some algorithms show strong generalization capacity across different data sources. Using Kaplan-Meier estimates, we demonstrate the strengths and limitations of the algorithms in detecting cancer progression over time by comparing to the trends observed from data. We assess their overall discrimination performance in personalized risk predictions by analyzing the accuracy and confidence in individual risk estimates. Discussion and ConclusionThis study examines the effectiveness of personalized prediction algorithms across different populations. Our results demonstrate the potential for generalizing risk prediction algorithms to external populations. These findings highlight the importance of considering population diversity when developing risk prediction algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.