Abstract

High-resolution (HR) magnetic resonance imaging (MRI) can reveal rich anatomical structures for clinical diagnoses. However, due to hardware and signal-to-noise ratio limitations, MRI images are often collected with low resolution (LR) which is not conducive to diagnosing and analyzing clinical diseases. Recently, deep learning super-resolution (SR) methods have demonstrated great potential in enhancing the resolution of MRI images; however, most of them did not take the cross-modality and internal priors of MR seriously, which hinders the SR performance. In this paper, we propose a cross-modality reference and feature mutual-projection (CRFM) method to enhance the spatial resolution of brain MRI images. Specifically, we feed the gradients of HR MRI images from referenced imaging modality into the SR network to transform true clear textures to LR feature maps. Meanwhile, we design a plug-in feature mutual-projection (FMP) method to capture the cross-scale dependency and cross-modality similarity details of MRI images. Finally, we fuse all feature maps with parallel attentions to produce and refine the HR features adaptively. Extensive experiments on MRI images in the image domain and k-space show that our CRFM method outperforms existing state-of-the-art MRI SR methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.