Abstract
Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations by handling the modality-discrepancy in feature level. However, the modality difference in classifier level has received much less attention, resulting in limited discriminability. In this paper, we propose a novel modality-aware collaborative ensemble (MACE) learning method with middle-level sharable two-stream network (MSTN) for VT-ReID, which handles the modality-discrepancy in both feature level and classifier level. In feature level, MSTN achieves much better performance than existing methods by capturing sharable discriminative middlelevel features in convolutional layers. In classifier level, we introduce both modality-specific and modality-sharable identity classifiers for two modalities to handle the modality discrepancy. To utilize the complementary information among different classifiers, we propose an ensemble learning scheme to incorporate the modality sharable classifier and the modality specific classifiers. In addition, we introduce a collaborative learning strategy, which regularizes modality-specific identity predictions and the ensemble outputs. Extensive experiments on two cross-modality datasets demonstrate that the proposed method outperforms current state-of-the-art by a large margin, achieving rank- 1/mAP accuracy 51.64%/50.11% on the SYSU-MM01 dataset, and 72.37%/69.09% on the RegDB dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.